

SPIM Instructions
Instructions marked with a dagger (†) are pseudoinstructions.

Arithmetic Instructions

In all instructions below, Src2 can either be a register or an immediate value (a
16 bit integer). The immediate forms of the instructions are only included for
reference. The assembler will translate the more general form of an instruction
(e.g., add) into the immediate form (e.g., addi) if the second argument is a
constant.

Absolute Value

Put the absolute value of the integer from register Rsrc in register Rdest:

abs Rdest, Rsrc Absolute Value †

Add

Put the sum of the integers from registers Rs and Rt (or Imm) into register Rd:

add Rd, Rs, Rt Addition (with overflow)

0 Rs Rt Rd 0 0x20
6 5 5 5 5 6

addu Rd, Rs, Rt Addition (without overflow)

0 Rs Rt Rd 0 0x21
6 5 5 5 5 6

addi Rt, Rs, Imm Addition Immediate (with overflow)

8 Rs Rt Imm
6 5 5 16

addiu Rt, Rs, Imm Addition Immediate (without overflow)

9 Rs Rt Imm
6 5 5 16

1

Subtract

Put the difference of the integers from register Rs and Rt into register Rd:

sub Rd, Rs, Rt Subtract (with overflow)

0 Rs Rt Rd 0 0x22
6 5 5 5 5 6

subu Rd, Rs, Rt Subtract (without overflow)

0 Rs Rt Rd 0 0x23
6 5 5 5 5 6

Multiply

Put the product of registers Rsrc1 and Src2 into register Rdest:

mul Rdest, Rsrc1, Src2 Multiply (without overflow) †

mulo Rdest, Rsrc1, Src2 Multiply (with overflow) †

mulou Rdest, Rsrc1, Src2 Unsigned Multiply (with overflow) †

Multiply the contents of registers Rs and Rt. Leave the low-order word of the
product in register lo and the high-word in register hi:

mult Rs, Rt Multiply

0 Rs Rt 0 0x18
6 5 5 10 6

multu Rs, Rt Unsigned Multiply

0 Rs Rt 0 0x19
6 5 5 10 6

Divide

Divide the integer in register Rs by the integer in register Rt. Leave the quotient
in register lo and the remainder in register hi:

div Rs, Rt Divide (with overflow)

0 Rs Rt 0 0x1a
6 5 5 10 6

2

divu Rs, Rt Divide (without overflow)

0 Rs Rt 0 0x1b
6 5 5 10 6

Note that if an operand is negative, the remainder is unspecified by the MIPS ar-
chitecture and depends on the conventions of the machine on which SPIM is run.

Put the quotient of the integers from register Rsrc1 and Src2 into register
Rdest:

div Rdest, Rsrc1, Src2 Divide (with overflow) †

divu Rdest, Rsrc1, Src2 Divide (without overflow) †

Negative

Put the negative of the integer from register Rsrc into register Rdest:

neg Rdest, Rsrc Negate Value (with overflow) †

negu Rdest, Rsrc Negate Value (without overflow) †

Logical Operations

Put the logical AND of the integers from register Rs and register Rt (or the
zero-extended immediate value Imm) into register Rd:

and Rd, Rs, Rt AND

0 Rs Rt Rd 0 0x24
6 5 5 5 5 6

andi Rd, Rs, Imm AND Immediate

0xc Rs Rd Imm
6 5 5 16

Put the logical NOR of the integers from register Rs and Rt into register Rd:

nor Rd, Rs, Rt NOR

0 Rs Rt Rd 0 0x27
6 5 5 5 5 6

3

Put the bitwise logical negation of the integer from register Rsrc into register
Rdest:

not Rdest, Rsrc NOT †

Put the logical OR of the integers from register Rs and Rt (or Imm) into register
Rd:

or Rd, Rs, Rt OR

0 Rs Rt Rd 0 0x25
6 5 5 5 5 6

ori Rt, Rs, Imm OR Immediate

0xd Rs Rt Imm
6 5 5 16

Put the logical XOR of the integers from register Rsrc1 and Src2 (or Imm) into
register Rdest:

xor Rd, Rs, Rt XOR

0 Rs Rt Rd 0 0x26
6 5 5 5 5 6

xori Rt, Rs, Imm XOR Immediate

0xe Rs Rt Imm
6 5 5 16

Remainder

Put the remainder from dividing the integer in register Rsrc1 by the integer in
Src2 into register Rdest:

rem Rdest, Rsrc1, Src2 Remainder †

remu Rdest, Rsrc1, Src2 Unsigned Remainder †

Note that if an operand is negative, the remainder is unspecified by the MIPS
architecture and depends on the conventions of the machine on which SPIM is
run.

4

Rotate and Shift Instructions

Rotate the contents of register Rsrc1 left (right) by the distance indicated by
Src2 and put the result in register Rdest:

rol Rdest, Rsrc1, Src2 Rotate Left †

ror Rdest, Rsrc1, Src2 Rotate Right †

Shift the contents of register Rt left (right) by the distance indicated by Sa (Rs)
and put the result in register Rd:

sll Rd, Rt, Sa Shift Left Logical

0 Rs Rt Rd Sa 0
6 5 5 5 5 6

sllv Rd, Rt, Rs Shift Left Logical Variable

0 Rs Rt Rd 0 4
6 5 5 5 5 6

sra Rd, Rt, Sa Shift Right Arithmetic

0 Rs Rt Rd Sa 3
6 5 5 5 5 6

srav Rd, Rt, Rs Shift Right Arithmetic Variable

0 Rs Rt Rd 0 7
6 5 5 5 5 6

srl Rd, Rt, Sa Shift Right Logical

0 Rs Rt Rd Sa 2
6 5 5 5 5 6

srlv Rd, Rt, Rs Shift Right Logical Variable

0 Rs Rt Rd 0 6
6 5 5 5 5 6

5

Constant-Manipulating Instructions

Move the immediate imm into register Rdest:

li Rdest, imm Load Immediate †

Load the lower halfword of the immediate imm into the upper halfword of register
Rdest. The lower bits of the register are set to 0:

lui Rt, imm Load Upper Immediate

0xf Rs Rt Imm
6 5 5 16

Comparison Instructions

In all instructions below, Src2 can either be a register or an immediate value
(a 16 bit integer).

Set register Rdest to 1 if register Rsrc1 equals Src2 and to be 0 otherwise:

seq Rdest, Rsrc1, Src2 Set Equal †

Set register Rdest to 1 if register Rsrc1 is greater than or equal to Src2 and to
0 otherwise:

sge Rdest, Rsrc1, Src2 Set Greater Than Equal †

sgeu Rdest, Rsrc1, Src2 Set Greater Than Equal Unsigned †

Set register Rdest to 1 if register Rsrc1 is greater than Src2 and to 0 otherwise:

sgt Rdest, Rsrc1, Src2 Set Greater Than †

sgtu Rdest, Rsrc1, Src2 Set Greater Than Unsigned †

Set register Rdest to 1 if register Rsrc1 is less than or equal to Src2 and to 0
otherwise:

sle Rdest, Rsrc1, Src2 Set Less Than Equal †

sleu Rdest, Rsrc1, Src2 Set Less Than Equal Unsigned †

6

Set register Rdest to 1 if register Rsrc1 is less than Src2 (or Imm) and to 0
otherwise:

slt Rd, Rs, Rt Set Less Than

0 Rs Rt Rd 0 0x2a
6 5 5 5 5 6

sltu Rd, Rs, Rt Set Less Than Unsigned

0 Rs Rt Rd 0 0x2b
6 5 5 5 5 6

slti Rd, Rs, Imm Set Less Than Immediate

0xa Rs Rt Imm
6 5 5 16

sltiu Rd, Rs, Imm Set Less Than Unsigned Immediate

0xb Rs Rt Imm
6 5 5 16

Set register Rdest to 1 if register Rsrc1 is not equal to Src2 and to 0 otherwise:

sne Rdest, Rsrc1, Src2 Set Not Equal †

Branch and Jump Instructions

In all instructions below, Src2 can either be a register or an immediate value
(integer). Branch instructions use a signed 16-bit offset field; hence they can
jump 215 − 1 instructions (not bytes) forward or 215 instructions backwards.
The jump instruction contains a 26 bit address field.

For branch instructions, the offset of the instruction at a label is computed
by the assembler.

Unconditionally branch to the instruction at the label:

b label Branch pseudoinstruction †

7

Conditionally branch to the instruction at the label if coprocessor z’s condition
flag is true (false):

bczt label Branch Coprocessor z True

0x1z 8 1 Offset
6 5 5 16

bczf label Branch Coprocessor z False

0x1z 8 0 Offset
6 5 5 16

Conditionally branch to the instruction at the label if the contents of register
Rs equals the contents of register Rt:

beq Rs, Rt, label Branch on Equal

4 Rs Rt Offset
6 5 5 16

Conditionally branch to the instruction at the label if the contents of Rsrc
equals 0:

beqz Rsrc, label Branch on Equal Zero †

Conditionally branch to the instruction at the label if the contents of register
Rsrc1 are greater than or equal to Src2:

bge Rsrc1, Src2, label Branch on Greater Than Equal †

bgeu Rsrc1, Src2, label Branch on GTE Unsigned †

Conditionally branch to the instruction at the label if the contents of Rs are
greater than or equal to 0:

bgez Rs, label Branch on Greater Than Equal Zero

1 Rs 1 Offset
6 5 5 16

8

Conditionally branch to the instruction at the label if the contents of Rs are
greater than or equal to 0. Save the address of the next instruction in register
31:

bgezal Rs, label Branch on Greater Than Equal Zero And Link

1 Rs 0x11 Offset
6 5 5 16

Conditionally branch to the instruction at the label if the contents of register
Rsrc1 are greater than Src2:

bgt Rsrc1, Src2, label Branch on Greater Than †

bgtu Rsrc1, Src2, label Branch on Greater Than Unsigned †

Conditionally branch to the instruction at the label if the contents of Rs are
greater than 0:

bgtz Rs, label Branch on Greater Than Zero

7 Rs 0 Offset
6 5 5 16

Conditionally branch to the instruction at the label if the contents of register
Rsrc1 are less than or equal to Src2:

ble Rsrc1, Src2, label Branch on Less Than Equal †

bleu Rsrc1, Src2, label Branch on LTE Unsigned †

Conditionally branch to the instruction at the label if the contents of Rs are less
than or equal to 0:

blez Rs, label Branch on Less Than Equal Zero

6 Rs 0 Offset
6 5 5 16

Conditionally branch to the instruction at the label if the contents of Rs are less
than 0. Save the address of the next instruction in register 31:
bltzal Rs, label Branch on Less Than And Link

1 Rs 0x10 Offset
6 5 5 16

9

Conditionally branch to the instruction at the label if the contents of register
Rsrc1 are less than Src2:

blt Rsrc1, Src2, label Branch on Less Than †

bltu Rsrc1, Src2, label Branch on Less Than Unsigned †

Conditionally branch to the instruction at the label if the contents of Rs are less
than 0:

bltz Rs, label Branch on Less Than Zero

1 Rs 0 Offset
6 5 5 16

Conditionally branch to the instruction at the label if the contents of register
Rsrc1 are not equal to Src2:

bne Rs, Rt, label Branch on Not Equal

5 Rs Rt Offset
6 5 5 16

Conditionally branch to the instruction at the label if the contents of Rsrc are
not equal to 0:

bnez Rsrc, label Branch on Not Equal Zero †

Unconditionally jump to the instruction at Target:

j label Jump

2 Target
6 26

Unconditionally jump to the instruction at Target. Save the address of the next
instruction in register 31:

jal label Jump and Link

3 Target
6 26

10

Unconditionally jump to the instruction whose address is in register Rs. Save
the address of the next instruction in register Rd (or in register 31, if Rd is
omitted):

jalr [Rd,] Rs Jump and Link Register

0 Rs 0 Rd 0 9
6 5 5 5 5 6

Unconditionally jump to the instruction whose address is in register Rs:

jr Rs Jump Register

0 Rs 0 8
6 5 16 5

Load Instructions

Load computed address , not the contents of the location, into register Rdest:

la Rdest, address Load Address †

Load the byte at address (or at Offset + contents of register Base) into register
Rt. The byte is sign-extended by the lb, but not the lbu, instruction:

lb Rt, address|Offset(Base) Load Byte

0x20 Base Rt Offset
6 5 5 16

lbu Rt, address|Offset(Base) Load Unsigned Byte

0x24 Base Rt Offset
6 5 5 16

Load the 64-bit quantity at address into registers Rdest and Rdest + 1:

ld Rdest, address Load Double-Word †

11

Load the 16-bit quantity (halfword) at address (or at Offset + contents of
register Base) into register Rt. The halfword is sign-extended by the lh, but
not the lhu, instruction:

lh Rt, address|Offset(Base) Load Halfword

0x21 Base Rt Offset
6 5 5 16

lhu Rt, address|Offset(Base) Load Unsigned Halfword

0x25 Base Rt Offset
6 5 5 16

Load the 16-bit immediate into the most significant 16 bits of register Rt:

lui Rt, Imm Load Upper Immediate

15 0 Rt Imm
6 5 5 16

Load the 32-bit quantity (word) at address (or at Offset + contents of register
Base) into register Rt:

lw Rt, address|Offset(Base) Load Word

0x23 Base Rt Offset
6 5 5 16

Load the word at address (or at Offset + contents of register Base) into register
Rt of coprocessor z (0–3):

lwcz Rt, address|Offset(Base) Load Word Coprocessor

0x3z Base Rt Offset
6 5 5 16

Load the left (right) bytes from the word at the possibly-unaligned address into
register Rdest:

lwl Rdest, address Load Word Left

0x22 Rs Rt Offset
6 5 5 16

12

lwr Rdest, address Load Word Right

0x23 Rs Rt Offset
6 5 5 16

Load the 16-bit quantity (halfword) at the possibly-unaligned address into reg-
ister Rdest. The halfword is sign-extended by the ulh, but not the ulhu, in-
struction:

ulh Rdest, address Unaligned Load Halfword †

ulhu Rdest, address Unaligned Load Halfword Unsigned †

Load the 32-bit quantity (word) at the possibly-unaligned address into register
Rdest:

ulw Rdest, address Unaligned Load Word †

Store Instructions

Store the low byte from register Rt at address :

sb Rt, address Store Byte

0x28 Rs Rt Offset
6 5 5 16

Store the 64-bit quantity in registers Rsrc and Rsrc + 1 at address :

sd Rsrc, address Store Double-Word †

Store the low halfword from register Rt at address :

sh Rt, address Store Halfword

0x29 Rs Rt Offset
6 5 5 16

13

Store the word from register Rt at address :

sw Rt, address Store Word

0x2b Rs Rt Offset
6 5 5 16

Store the word from register Rt of coprocessor z at address :

swcz Rt, address Store Word Coprocessor

0x3(1−z) Rs Rt Offset
6 5 5 16

Store the left (right) bytes from register Rt at the possibly-unaligned address :

swl Rt, address Store Word Left

0x2a Rs Rt Offset
6 5 5 16

swr Rt, address Store Word Right

0x2e Rs Rt Offset
6 5 5 16

Store the low halfword from register Rsrc at the possibly-unaligned address :

ush Rsrc, address Unaligned Store Halfword †

Store the word from register Rsrc at the possibly-unaligned address :

usw Rsrc, address Unaligned Store Word †

Data Movement Instructions

Move the contents of Rsrc to Rdest:

move Rdest, Rsrc Move †

14

The multiply and divide unit produces its result in two additional registers,
hi and lo. The following instructions move values to and from these registers.
The multiply, divide, and remainder instructions described above are pseudoin-
structions that make it appear as if this unit operates on the general registers
and detect error conditions such as divide by zero or overflow.

Move the contents of the hi (lo) register to register Rd:

mfhi Rd Move From hi

0 0 Rd 0 0x10
6 10 5 5 6

mflo Rd Move From lo

0 0 Rd 0 0x12
6 10 5 5 6

Move the contents of register Rs to the hi (lo) register:

mthi Rs Move To hi

0 Rs 0 0x11
6 5 15 6

mtlo Rs Move To lo

0 Rs 0 0x13
6 5 15 6

Coprocessors have their own register sets. The following instructions move
values between these registers and the CPU’s registers.

Move the contents of coprocessor z’s register Rd to CPU register Rt:

mfcz Rt, Rd Move From Coprocessor z

0x1z 0 Rt Rd 0
6 5 5 5 11

15

Move the contents of floating point registers FRsrc1 and FRsrc1 + 1 to CPU
registers Rdest and Rdest + 1:

mfc1.d Rdest, FRsrc1 Move Double From Coprocessor 1 †

Move the contents of CPU register Rt to coprocessor z’s register Rd:

mtcz Rt, Rd Move To Coprocessor z

0x1z 4 Rt Rd 0
6 5 5 5 11

Floating Point Instructions

The MIPS has a floating point coprocessor (numbered 1) that operates on single
precision (32-bit) and double precision (64-bit) floating point numbers. This
coprocessor has its own registers, which are numbered $f0–$f31. Because these
registers are only 32-bits wide, two of them are required to hold doubles. To
simplify matters, floating point operations only use even-numbered registers—
including instructions that operate on single floats.

Values are moved in or out of these registers one word (32-bits) at a time by
the lwc1, swc1, mtc1, and mfc1 instructions described above or by the l.s, l.d,
s.s, and s.d pseudoinstructions described below. The flag set by floating point
comparison operations is read by the CPU with its bc1t and bc1f instructions.

In the real instructions below, Fs and Fd are floating-point registers. In
the pseudoinstructions, FRdest, FRsrc1, FRsrc2, and FRsrc are floating point
registers (e.g., $f2).

Compute the absolute value of the floating float double (single) in register Fs
and put it in register Fd:

abs.d Fd, Fs Floating Point Absolute Value Double

0x11 1 0 Fs Fd 5
6 5 5 5 5 6

abs.s Fd, Fs Floating Point Absolute Value Single

0x11 0 0 Fs Fd 5
6 5 5 5 5 6

16

Compute the sum of the floating float doubles (singles) in registers Fs and Ft
and put it in register Fd:

add.d Fd, Fs, Ft Floating Point Addition Double

0x11 1 Ft Fs Fd 0
6 5 5 5 5 6

add.s Fd, Fs, Ft Floating Point Addition Single

0x11 0 Ft Fs Fd 0
6 5 5 5 5 6

Compare the floating point double in register Fs against the one in Ft and set
the floating point condition flag FC true if they are equal:

c.eq.d Fs, Ft Compare Equal Double

0x11 1 Ft Fs Fd FC 2
6 5 5 5 5 2 4

c.eq.s Fs, Ft Compare Equal Single

0x11 0 Ft Fs Fd FC 2
6 5 5 5 5 2 4

Compare the floating point double in register Fs against the one in Ft and set
the floating point condition flag true if the first is less than or equal to the
second:

c.le.d Fs, Ft Compare Less Than Equal Double

0x11 1 Ft Fs 0 FC 2
6 5 5 5 5 2 4

c.le.s Fs, Ft Compare Less Than Equal Single

0x11 0 Ft Fs 0 FC 2
6 5 5 5 5 2 4

17

Compare the floating point double in register Fs against the one in Ft and set
the condition flag true if the first is less than the second:

c.lt.d Fs, Ft Compare Less Than Double

0x11 1 Ft Fs 0 FC 0xc
6 5 5 5 5 2 4

c.lt.s Fs, Ft Compare Less Than Single

0x11 0 Ft Fs 0 FC 0xc
6 5 5 5 5 2 4

Convert the single precision floating point number or integer in register Fs to a
double precision number and put it in register Fd:

cvt.d.s Fd, Fs Convert Single to Double

0x11 1 0 Fs Fd 0x21
6 5 5 5 5 6

cvt.d.w Fd, Fs Convert Integer to Double

0x11 0 0 Fs Fd 0x21
6 5 5 5 5 6

Convert the double precision floating point number or integer in register Fs to
a single precision number and put it in register Fd:

cvt.s.d Fd, Fs Convert Double to Single

0x11 1 0 Fs Fd 0x20
6 5 5 5 5 6

cvt.s.w Fd, Fs Convert Integer to Single

0x11 0 0 Fs Fd 0x20
6 5 5 5 5 6

18

Convert the double or single precision floating point number in register Fs to
an integer and put it in register Fd:

cvt.w.d Fd, Fs Convert Double to Integer

0x11 1 0 Fs Fd 0x24
6 5 5 5 5 6

cvt.w.s Fd, Fs Convert Single to Integer

0x11 0 0 Fs Fd 0x24
6 5 5 5 5 6

Compute the quotient of the floating float doubles (singles) in registers Fs and
Ft and put it in register Fd:

div.d Fd, Fs, Ft Floating Point Divide Double

0x11 1 Ft Fs Fd 3
6 5 5 5 5 6

div.s Fd, Fs, Ft Floating Point Divide Single

0x11 0 Ft Fs Fd 3
6 5 5 5 5 6

Load the floating float double (single) at address into register FRdest:

l.d FRdest, address Load Floating Point Double †

l.s FRdest, address Load Floating Point Single †

Move the floating float double (single) from register Fs to register Fd:

mov.d Fd, Fs Move Floating Point Double

0x11 1 0 Fs Fd 6
6 5 5 5 5 6

mov.s Fd, Fs Move Floating Point Single

0x11 0 0 Fs Fd 6
6 5 5 5 5 6

19

Compute the product of the floating float doubles (singles) in registers Fs and
Ft and put it in register Fd:

mul.d Fd, Fs, Ft Floating Point Multiply Double

0x11 1 Ft Fs Fd 2
6 5 5 5 5 6

mul.s Fd, Fs, Ft Floating Point Multiply Single

0x11 0 Ft Fs Fd 2
6 5 5 5 5 6

Negate the floating point double (single) in register Fs and put it in register Fd:

neg.d Fd, Fs Negate Double

0x11 1 0 Fs Fd 7
6 5 5 5 5 6

neg.s Fd, Fs Negate Single

0x11 0 0 Fs Fd 7
6 5 5 5 5 6

Store the floating float double (single) in register FRdest at address: Store the
floating float double (single) in register FRdest at address:

s.d FRdest, address Store Floating Point Double †

s.s FRdest, address Store Floating Point Single †

Compute the difference of the floating float doubles (singles) in registers Fs and
Ft and put it in register Fd:

sub.d Fd, Fs, Ft Floating Point Subtract Double

0x11 1 Ft Fs Fd 1
6 5 5 5 5 6

sub.s Fd, Fs, Ft Floating Point Subtract Single

0x11 0 Ft Fs Fd 1
6 5 5 5 5 6

20

Exception and Trap Instructions

Restore the Status register:

rfe Return From Exception

0x11 1 0 0x20
6 1 19 6

Register $v0 contains the number of the system call (see Table ??) provided by
SPIM:

syscall System Call

0x11 0 0xc
6 20 6

Cause exception n. Exception 1 is reserved for the debugger:

break n Break

0x11 code 0xd
6 20 6

Do nothing:

nop No operation

0 0 0 0 0 0
6 5 5 5 5 6

21

SYSCALL

A number of system services, mainly for input and output, are available for use by your MIPS program. They
are described in the table below.

Table of Available Services

Service Code
in

$v0

Arguments Result

print integer 1 $a0 = integer to print

print float 2 $f12 = float to print

print double 3 $f12 = double to print

print string 4 $a0 = address of null-terminated string to print

read integer 5 $v0 contains integer read

read float 6 $f0 contains float read

read double 7 $f0 contains double read

read string 8 $a0 = address of input buffer
$a1 = maximum number of characters to read

See note below table

exit (terminate
execution)

10

print character 11 $a0 = character to print See note below table

read character 12 $v0 contains character read

random int
range

42 $a0 = i.d. of pseudorandom number generator
(any int).
$a1 = upper bound of range of returned values.

$a0 contains pseudorandom,
uniformly distributed int value
in the range [0; upper bound],
drawn from this random
number generator's sequence

random float 43 $a0 = i.d. of pseudorandom number generator
(any int).

$f0 contains the next
pseudorandom, uniformly
distributed float value in the
range 0.0 = f 1.0 from this
random number generator's
sequence. See note below
table

random double 44 $a0 = i.d. of pseudorandom number generator
(any int).

$f0 contains the next
pseudorandom, uniformly
distributed double value in
the range 0.0 = f 1.0 from this
random number generator's
sequence. See note below
table

NOTES: Services numbered 30 and higher are not provided by SPIM
Service 8 - Follows semantics of UNIX 'fgets'. For specified length n, string can be no longer than n-1. If less
than that, adds newline to end. In either case, then pads with null byte If n = 1, input is ignored and null byte
placed at buffer address. If n 1, input is ignored and nothing is written to the buffer.
Service 11 - Prints ASCII character corresponding to contents of low-order byte.

